Manbetx体育入口欢迎您!
首页 >> 师资队伍 >> 物理系 >> B >> 正文
薄天利
发布日期:2020-01-06 来源: 浏览次数:
个人简介
基本信息:
薄天利,教授,博士,硕士生导师。2003年毕业于兰州大学Manbetx体育入口,2010年毕业于兰州大学土木工程与力学学院,分别获理学学士和博士学位。2008年入职兰州大学。2019年调入Manbetx体育入口。2013年获全国百篇优秀博士论文提名。主要社会兼职有全国基金委环境力学专委会理事和甘肃省力学学会第九届理事会理事。
教学情况:
《概率论与数理统计》、《计算力学》和《有限元分析及MPI并行计算》等
科研情况:
从事风沙物理学与环境力学相关的研究工作。主持和参加了5项国家自然科学基金项目、1项国家科技支撑计划项目,和1项装备预研基金项目共用技术基金等。在Journalof Geophysical Research、Physics of Fluids和NewJournal of Physics等期刊上发表SCI论文45篇。其中,1篇被NewJournal of Physics评为“Highlight论文”,1篇被EarthEmphasis central of top earth and environmental science research评为“key research article”。此外,获得2项美国发明专利、2项发明专利、2项软件著作权和2项地方标准。
科研项目:
7.风沙环境下高雷诺数壁湍流结构及其演化机理研究(国家自然科学重大基金项目No.11490551,2015-2019,骨干成员)
6.复杂环境与介质相互作用的非线性力学(国家自然科学基金创新研究群体科学基金No.11421062,2015-2017,骨干成员)
5.沙尘暴中带电沙粒对陆用近程防空WQ车载雷达影响(装备预研基金项目共用技术基金,2015-2017)
4.甘肃民勤风沙运动监检测及沙化防治技术集成优化与示范(国家科技支撑计划项目No.2013BAC07B01,2013-2016,骨干成员)
3.风沙流/沙尘暴流场特性及其湍流结构的测量与分析(国家自然科学重点基金项目No.11232006,2013-2017,骨干成员)
2.复杂环境与介质相互作用的非线性力学(国家自然科学基金创新研究群体科学基金No.11121202,2012-2014,骨干成员)
1.沙漠边缘时空演化过程跨尺度模型及其仿真研究(国家自然科学基金青年科学基金项目No.11202088,2012-2015)
科研成果:
论文:
45. Liu L,BoT L*. A study on the initiation of saltation in the model of wind-blownsand transport considering the effect of turbulence[J]. Granular Matter, 2019,21(3): 78.
44. Mei A,BoT L*. Spatial Variation of Statistical and Spectral Properties of theStream Wise and Wall-Normal Velocity Fluctuations in the Near-NeutralAtmospheric Surface Layer[J]. Boundary-Layer Meteorology, 2019, 173(2):223-242.
43. Liu L,BoT*. Effects of checkerboard sand barrier belt on sand transport and duneadvance[J]. Aeolian Research, 2020, 42: 100546.
42. Zhang X,Yang S,Bo T*. Experimental study on the space charge properties in hazeevents[J]. Journal of Environmental Sciences, 2020, 87: 361-376.
41. Li XB,BoTL*.An application of Quadrant and Octant Analysis to the AtmosphericSurface Layer [J].Journal of Wind Engineering & Industrial Aerodynamics,2019.
40. Li XB,BoTL*. Statistics and spectra of turbulence under different roughness in theatmospheric surface layer [J].Earth Surface Processes and Landforms,2019.
39. Han, G. W.,Liu, L.,Bo, T. L., & Zheng, X. J. (2019). A Predictive Model forthe Streamwise Velocity in the Near‐neutral AtmosphericSurface Layer.Journal of Geophysical Research: Atmospheres.
38. Zhang XB, LiDF,Bo TL*.The variation of the vertical electric field (Ez) with heightduring dust storms and the effects of environmental variables on Ez[J].Granular Matter, 2018.
37. Yang H,BoT*. Scaling of Wall-Normal Turbulence Intensity and Vertical EddyStructures in the Atmospheric Surface Layer[J]. Boundary-Layer Meteorology,2018, 166(2): 199-216.
36. Han G, ZhengX J,Bo T*. Experimental investigation of turbulent transport ofmomentum and heat in the atmospheric surface layer[J]. Journal of Atmosphericand Solar-Terrestrial Physics, 2017, 164: 18-28.
35. Huang H J,BoT L*, Zhang R. Exploration of splash function and lateral velocity based onthree-dimensional mixed-size grain/bed collision[J]. Granular Matter, 2017,19(4): 73.
34.Bo T L,Fu L T, Liu L, Zheng X*. An improved numerical model suggests potentialdifferences of wind‐blown sand between on Earth andMars[J].Journal of Geophysical Research: Atmospheres, 2017, 122(11):5823-5836.
33. Liu H Y,BoT L*, Liang Y R. The variation of large-scale structure inclination anglesin high Reynolds number atmospheric surface layers[J]. Physics of Fluids, 2017,29(3): 035104.
32. Zhang H,BoT L, Zheng X*. Evaluation of the electrical properties of dust storms bymulti-parameter observations and theoretical calculations[J].Earth andPlanetary Science Letters, 2017, 461: 141-150.
31. Zheng X*,Wang G,Bo T, et al. Field Observations on the Turbulent Features of theNear-surface Flow Fields and Dust Transport During Dust Storms[J]. ProcediaIUTAM, 2015, 17: 13-19.
30.Bo T L,Ma P, Zheng X J*. Numerical study on the effect of semi-buried strawcheckerboard sand barriers belt on the wind speed[J]. Aeolian Research, 2015,16: 101-107.
29.Bo T L,Li Z, Zheng X J*. Sand particle dislodgement in windblown sand[J].ActaMechanicaSinica, 2014, 30(6): 910-916.
28. Huang H J,BoT L*, Zheng X J. Numerical modeling of wind-blown sand on Mars[J].TheEuropean Physical Journal E, 2014, 37(9): 80.
27.Bo T L,Zhang H, Zheng X J*. Charge-to-mass ratio of saltating particles in wind-blownsand[J].Scientific reports, 2014, 4.
26. Wang G,BoT, Zhang J, Zhang J*. The critical frequency of the large-scale vorticesand the background turbulence in desert area[J].Atmospheric Research,2014, 143: 293-300.
25. Fu L T,BoT L*, Zheng X J. Lift-off parameters of saltating particles on Mars[J].Icarus,2014, 234: 91-98.
24. Zhang H,Zheng X J,Bo T L*. Electric fields in unsteady wind-blown sand[J].TheEuropean Physical Journal E, 2014, 37(2): 1-12.
23. Wang G,BoT, Zhang J*, et al. Transition region where the large-scale and very largescale motions coexist in atmospheric surface layer: wind tunnelinvestigation[J]. Journal of Turbulence, 2014, 15(3): 172-185.
22.Bo T L,Zheng X J*. A new expression describing the migration of aeoliandunes[J].Catena, 2014, 118: 1-8.
21. Zhang H,Zheng X J,Bo T*. Electrification of saltating particles in wind‐blownsand: Experiment and theory[J].Journal of Geophysical Research: Atmospheres,2013, 118(21).
20.Bo T L,Zhang H, Hu W W, Zheng X J*. The analysis of electrification in windblownsand[J]. Aeolian Research, 2013, 11: 15-21.
19. Liu H Y,BoT L*, Wang G H, et al. The Analysis of Turbulence Intensity and ReynoldsShear Stress in Wall-Bounded Turbulent Flows at High Reynolds Numbers[J].Boundary-layer meteorology, 2014, 150(1): 33-47.
18. Fu L T,BoT L*, Gu H H, et al. Incident angle of saltating particles in wind-blownsand[J].PloS one, 2013, 8(7): e67935.
17.Bo T L,Zheng X J*, Duan S Z, et al. Influence of sand grain diameter and wind velocityon lift-off velocities of sand particles[J].The European Physical Journal E,2013, 36(5): 1-10.
16. Zheng X J,Fu L T,Bo T L*. Incident velocity and incidentangle of saltating sand grains on Mars[J].New Journal of Physics, 2013,15(4): 043014. (Highlight paper)
15.Bo T L,Zheng X J*, Duan S Z, et al. Analysis of sand particles’ lift-off and incidentvelocities in wind-blown sand flux[J]. ActaMechanicaSinica, 2013, 29(2):158-165.
14.Bo T L,Zheng X J*, Duan S Z, et al. The influence of wind velocity and sand graindiameter on the falling velocities of sand particles[J].Powder technology,2013, 241: 158-165.
13.Bo T L,Zhang H, Zhu W, Zheng X J*. Theoretical prediction of electric fields in wind‐blownsand[J].Journal of Geophysical Research: Atmospheres, 2013, 118(10):4494-4502.
12.Bo T L,Zheng X J*. Collision behaviors of barchans in aeolian dune fields[J].Environmental earth sciences, 2013, 70(7): 2963-2970.
11.Bo T L,Fu L T, Zheng X J*. Modeling the impact of overgrazing on evolution process ofgrassland desertification[J]. Aeolian Research, 2013, 9: 183-189.
10.Bo T L,Zheng X J*. Wind speed-up process on the windward slope of dunes in dunefields[J]. Computers & Fluids, 2013, 71: 400-405.
9.Bo T L,Zheng X J*. Numerical simulation of the evolution and propagation of aeolian dunefields toward a desert–oasis zone[J].Geomorphology, 2013, 180: 24-32.(Keyresearch article)
8.Bo T L,Zheng X J*. A field observational study of electrification within a dust stormin Minqin, China[J]. Aeolian Research, 2013, 8: 39-47.
7. Fu L,Bo T*,Du G, et al. Modeling the responses of grassland vegetation coverage to grazingdisturbance in an alpine meadow[J]. Ecological modelling, 2012, 247: 221-232.
6.Bo T L,Zheng X J*. The formation and evolution of aeolian dune fields underunidirectional wind[J].Geomorphology, 2011, 134(3): 408-416.
5.Bo T L,Zheng X J*. Bulk transportation of sand particles in quantitative simulationsof dune field evolution[J].Powder technology, 2011, 214(2): 243-251.
4.Bo TL,Zheng XJ*, Analysis on the dynamic behaviors of Aeolian sand ripples and sanddunes[J]. Chinese Science Bulletin, 2009, 54(11):31488~31495
3. Zheng X J,BoT L*, Zhu W. A scale-coupled method for simulation of the formation andevolution of aeolian dune field[J].International Journal of NonlinearSciences & Numerical Simulation, 2009, 10(3): 387-395.
2. Zheng X J,BoT L*, Xie L. DPTM simulation of aeolian sand ripple[J]. Science in ChinaSeries G: Physics, Mechanics and Astronomy, 2008, 51(3): 328-336.
1.Bo T,Xie L, Zheng X*. Numerical approach to wind ripple in desert[J].InternationalJournal of Nonlinear Sciences and Numerical Simulation, 2007, 8(2): 223.
其它:
8.郑晓静,薄天利,黄宁。甘肃省地方标准:格状沙障设计规范。DB62/T2750-2017
7.郑晓静,薄天利,黄宁。甘肃省地方标准:高寒牧区沙质草地沙漠化强度判别。DB62/T2751-2017
6. Zheng X,BoT, Liang Y, et al. Monitoring system for turbulence of atmospheric boundarylayer under wind drift sand flow or sand dust storm environment: U.S. Patent9,500,769[P]. 2016-11-22.
5. Zheng X,BoT, Liang Y. Real-time synchronous measuring system for multiple factorssuch as wind-blown sand electric field, sand particle charging and wind speed:U.S. Patent 9,244,191[P]. 2016-1-26.
4.郑晓静,薄天利,梁轶瑞,2013,一种风沙电场、沙粒带电和风速等多因素实时同步测量系统,发明专利授权号:ZL201110157113.9.
3.薄天利,郑晓静,梁轶瑞,张静红,王国华,2012,一种风沙流或沙尘暴环境下大气边界层湍流观测系统,发明专利授权号:201210164114.0
2.薄天利,郑晓静,2010,风成沙波纹模拟软件系统软件,国家软件著作权登记号:2010SR056347.
1.郑晓静,薄天利,2009,风成沙丘场模拟软件系统软件,国家软件著作权登记号:2010SR017731.
官方网站:www.hnxiangyun.com 邮箱:wlxy@nxu.edu.cn
地址:宁夏银川市西夏区文萃北街217号
版权所有:ManBetX体育入口(官方)APP下载IOS/安卓通用版/手机版 copyright © 2015 宁ICP备 05001458号 宁公网安备64010502000131